Development of Low-Cost, Highly-Sinterable (Ni,Fe)<sub>3</sub>O<sub>4</sub>-Based Materials for SOFC Cathode-Side Contact Application

#### **Jiahong Zhu**

#### Department of Mechanical Engineering Tennessee Technological University

18<sup>th</sup> Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting June 12-14, 2017, Pittsburgh, PA

# Outline

- Introduction and Project Objectives
- Major Progress/Conclusions from the Phase I Study
- Effect of Starting Powders on the Spinel Layer Formation
- Performance Evaluation of the Sintered Spinel Contact
  Area Specific Resistance (ASR), Chemical Compatibility, etc.
- Cost Analysis
- Concluding Remarks
- Acknowledgments

# **Cathode-Side Contact in SOFC Stacks**

- Major functions of cathode-side contact:
  - To minimize the ohmic resistance at the interconnect-electrode interface
  - To improve mechanical bonding
  - To provide for additional gas channels to the electrode
- Requirements of cathode-side contact materials:
  - Low material/processing cost
  - High electrical conductivity
  - Match in CTE



- Adequate stability and compatibility
- Appropriate sinterability and porosity level
- Good bonding strength with adjacent stack components

Schematic of the Cathode-Interconnect Interface

# Why NiFe<sub>2</sub>O<sub>4</sub>-Based Spinel as Contact Material?

- Most of cathode contact developments have focused on (La,Sr)(Mn,Co,Fe,Ni)O<sub>3</sub>:
  - Difficulty in balancing the electrical conductivity, CTE & sinterability of perovskites.
- Conductive spinels based on NiFe<sub>2</sub>O<sub>4</sub> are also promising:
  - Low cost, decent electrical conductivity and CTE (12x10<sup>-6</sup>/°C).

| Metal  | Cost (\$/lb) |  |  |  |  |
|--------|--------------|--|--|--|--|
| Cobalt | 13.5         |  |  |  |  |
| Nickel | 4.5          |  |  |  |  |
| Iron   | 0.2          |  |  |  |  |



Electrical Conductivity of (Ni,Fe)<sub>3</sub>O<sub>4</sub>, as Compared with Other Oxides

Unfortunately, the sinterability of NiFe<sub>2</sub>O<sub>4</sub> is poor (≥1200°C) if metal oxides are used. Novel sintering mechanisms need to be identified and utilized to lower its sintering temperature.

# Utilization of EARS for Reduced-Temperature Sintering of (Ni,Fe)<sub>3</sub>O<sub>4</sub>-Base Spinel Contact

- Employment of metallic powders instead of oxide powders as the starting precursor to lower the sintering temperature
  - <u>Environmentally-Assisted</u>
    <u>Reactive Sintering (EARS)</u>:

Ni + 2Fe + 
$$2O_2(g) = NiFe_2O_4$$
  
VS.  
NiO + 2Fe<sub>2</sub>O<sub>2</sub> = NiFe<sub>2</sub>O<sub>4</sub>



Synthesis of (Ni,Fe)<sub>3</sub>O<sub>4</sub> ("S") via EARS using (a) Mixed Fe & Ni Powders; (b) Fe-Ni Alloy Powder

- Enhanced sintering via EARS due to the following facts:
  - Heat released during the reaction;
  - Volume expansion upon conversion of metal to metal oxide;
  - Formation of highly active, nanoscale surface oxides
  - Shorter diffusion distance when a prealloyed powder is employed. 5

# **Phase I Project Objectives**

 Optimization of the (Ni,Fe)<sub>3</sub>O<sub>4</sub> spinel layer formation via controlling the parameters involved in EARS (especially the type of metallic precursors).

- Critical assessment of the performance of the EARS (Ni,Fe)<sub>3</sub>O<sub>4</sub> layer
- Exploration of further performance improvement & cost analysis



Flow Chart of the Research Tasks Involved in the Phase I Project

#### **Major Progress/Conclusions**

- A mixture of Fe + Ni powders, binary Fe-Ni or ternary Fe-Ni-Co alloy powder can be used as precursor to form a spinel layer.
- The ternary alloy powder is preferred, due to more uniform spinel conversion, better compatibility, and lower ASR.
- Approaches for further improving the performance of the spinel contact have been identified.
- A total stack cost reduction of around 6.9% can be achieved with the implementation of the new alloy contact precursor.



Microstructure of Test Cell with Fe-Ni-Co Alloy Precursor Contact after Thermal Exposure at 800°C for 1000 h



#### The Fe-Ni alloy powder is preferred over a mixture of Fe and Ni powders as spinel-forming precursor



10 µm

With Fe-Ni alloy powder

10 µm



- A surface  $Fe_2O_3$  sub-layer and some areas of internal NiO and  $Fe_2O_3$  were observed, indicating a non-uniform microstructure.
- The converted spinel layer with the Fe-Ni alloy powder was relatively uniform microstructurally and compositionally.

## Area-Specific Resistance (ASR) Measurement

- A number of test cells were constructed, with the spinelforming contact precursor layer sandwiched between the interconnect (Crofer 22 APU or SS 441) and the LSM cathode.
- The test cells were spring-loaded and the ASR change during either isothermal or cyclic exposure at 800°C in air was monitored using a special 6-cell test rig.



Schematic of the ASR Test Cell and Test Configuration

# **ASR Change as a Function of Time for Crofer 22 APU/Contact/LSM Cells with Metallic Contact Pastes**



Cell ASR at 800°C during Isothermal Exposure of Test Cells with Various Contact Precursors

Cell ASR at 800°C during Cyclic Exposure of Test Cells with Ternary Alloy Precursor

- During isothermal exposure, the ASR for test cells with the mixed Fe+Ni precursor were higher than those with the alloy precursors, and the cell with the Fe-Ni-Co alloy precursor exhibited the lowest ASR.
- Thermal cycling had minimal effect on the ASR performance for test cells with the Fe-Ni-Co alloy contact precursor, due to the excellent CTE match of the contact layer with adjacent stack components. 10

#### Effect of Spinel-Based Interconnect Coating on the ASR Performance of SS 441/Fe-Ni-Co Contact/LSM Cells



ASR vs. Time during 1000-h Isothermal Testing at 800°C in Air for Test Cells with Uncoated and (Mn,Co)<sub>3</sub>O<sub>4</sub>-Coated SS 441 Interconnects

- With SS 441 as interconnect, the cell ASR was ~20 mΩ·cm<sup>2</sup> and increased at a low rate, similar to the results with Crofer 22 APU as interconnect.
- However, with application of an EARS-processed, Ce-modified (Mn,Co)<sub>3</sub>O<sub>4</sub> coating on SS 441, the cell ASR continued to drop during the test.
- The overall promising ASR performance of interconnect/contact/LSM cells with the ternary alloy as the contact precursor was further confirmed.

#### Cross-Section of Crofer 22 APU/Contact/LSM Cells with a Mixture of Fe+Ni Powders as Contact Precursor



- On the Crofer 22 APU side, a thin Cr<sub>2</sub>O<sub>3</sub> scale was formed after 1000-h testing. Both Cr and Mn were detected in the contact layer near the interface.
- The Fe+Ni contact layer was less uniform compositionally and structurally near the cathode-contact interface. Fe<sub>2</sub>O<sub>3</sub> penetration into the cathode observed in some areas.

um

## Cross-Section of Crofer 22 APU/Contact/LSM Cells with the Fe-Ni Alloy Contact Paste



- On the Crofer 22 APU side, a thin Cr<sub>2</sub>O<sub>3</sub> scale was formed after 1000-h testing and both Cr and Mn were detected in the contact layer near the interface.
- On the cathode side, negligible interdiffusion between the contact layer and LSM was observed. No Cr was detected in LSM.

## Cross-Sectional Views of SS441/Contact/LSM Cells with the Fe-Ni-Co Alloy Contact Precursor



A thicker Cr<sub>2</sub>O<sub>3</sub> scale and a larger interdiffusion zone (IZ) were formed between SS441 and the contact layer for the cell with the bare (uncoated) interconnect.

• The application of the spinel coating on the interconnect alloy significantly reduced the interdiffusion between the interconnect and the contact layer.

#### Further Improvement of NiFe<sub>2</sub>O<sub>4</sub>-Based Spinel Contact: Alloy Design Approach

- The alloy composition can be optimized via a combination of fundamental study of phase equilibria & composition screening in the  $Fe_2O_3$ -NiO-Co $_3O_4$  system, alloy design using physical metallurgy principles, and cost considerations.
  - ✓ Optimization of the Fe/Ni/Co levels
  - ✓ Addition of microalloying elements
  - Powder fabrication and characterization



#### Ternary Fe-Ni-Co Phase Diagram

#### Further Improvement of NiFe<sub>2</sub>O<sub>4</sub>-Based Spinel Contact: 2<sup>nd</sup>-Phase Addition to Form Composite Contact

- The 2<sup>nd</sup> phase should be electrically conductive, CTEmatched, and chemically compatible with the cathode, interconnect, and (Ni,Fe)<sub>3</sub>O<sub>4</sub>, and preferably Cr-absorbing.
  - Potential candidates includes LSM, LSF, LSCF, LSMC, LNF, LCN, etc.
  - While NiFe<sub>2</sub>O<sub>4</sub> is compatible with Cofree perovskites (LSM/LSF/LNF), a new (Ni,Co)O phase is formed between the spinel and Cocontaining perovskites (LSCF/LSMC/LCF).



XRD Patterns of Two-Phase Mixtures after Firing <sup>16</sup>

## Cost Analysis – Simplified Synthesis of Both Contact Layer and Interconnect Coating



#### Cost Analysis - Production costs of contact layer, interconnect coating, and stack per system

- A stack cost reduction of 6.9% can be achieved, if our new alloy precursor concept is implemented as cathode-side contact.
- An additional 1.1% cost reduction is expected, if interconnect coating can also be synthesized using metallic precursor powder and co-sintering of the interconnect coating/contact layer can be realized during initial stack firing.
- A total stack cost saving of ~8.0% can be achieved, if both of them are considered.

|               | Cost         | Material  | Annualized Capital and O&M (\$) |             |       | Total (\$) | Stack Cost |           |
|---------------|--------------|-----------|---------------------------------|-------------|-------|------------|------------|-----------|
| System        |              | Cost (\$) | Capital                         | Electricity | O&M   | Labor      |            | Reduction |
| Contact Layer | Conventional | 792       | 769                             | 12          | 92    | 225        | 1,890      | 6.9%      |
|               | New          | 109       | 59                              | 6           | 16    | 25         | 215        |           |
| Interconnect  | Conventional | 160       | 125                             | 55          | 35    | 49         | 424        | 1 10/     |
| Coating       | New          | 36        | 59                              | 6           | 16    | 25         | 142        | 1.170     |
| Stack         | Conventional | 13,285    | 7,401                           | 251         | 1,684 | 1,806      | 24,427     | 8.0%      |
|               | New          | 12,478    | 6,625                           | 196         | 1,589 | 1,582      | 22,470     |           |

Note: The data for the conventional approach was derived from Weimar et al. (PNNL-22732, 2013); however, instead of Ag, LSM was selected as the contact in the current cost study. 18

# **Concluding Remarks**

- Low-cost, EARS-processed (Ni,Fe)<sub>3</sub>O<sub>4</sub>-based layers with promising performance have been successfully synthesized.
- While a mixture of Fe & Ni powders and an Fe-Ni alloy powder can be used as the precursor for the spinel-layer synthesis, the ternary alloy powder derived contact offers the best performance:
  - Uniform microstructure
  - Low and stable ASR
  - Cost advantages
    - Only one powder is needed (lower powder process cost)
    - No need of powder mixing
    - Doped spinel formation via alloy composition adjustment (multi-component alloys)



Multi-component alloy development should be further pursued. 19

# Acknowledgments

- U. S. Department of Energy National Energy Technology Laboratory, SOFC Innovative Concepts and Core Technology Research Program, Award No. DE-FE0026210; Project Manager: Dr. Patcharin Burke
- Allen Yu, Joseph Simpson, David Chesson, and Brian Bates from TTU
- Dr. Hossein Ghezel-Ayagh, FuelCell Energy, Inc.